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Abstract

In this paper the Aumann and the Debreu integrals are introduced and results

about their comparison are given in countably and finitely additive setting.
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1 Introduction

Robert J. Aumann was the first who introduced in 1965, in the paper ”Integrals

of set valued functions”, the definition of a set valued integral with respect to the

Lebesgue measure λ. In his work he considered multifunctions F : [0, 1] → 2IRn \ ∅

and defined the integrals in terms of integrable selections in the following way:

∫
Fdλ =

{∫
fdλ, where f ∈ L1(λ) and f(t) ∈ F (t) for almost every t ∈ [0, 1]

}
.

The Aumann integral, that we denote from now on by (A)-integral, obviously al-

ways exists; nevertheless it can be empty. In any case this formulation, which is very
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natural and useful in view of applications (as in Control Theory or Mathematical

Economics), lacks in general a lot of properties. For instance: convexity, closedness,

compactness and convergence theorems, which are very important in the mentioned

applications.

So after the pioneer work of Aumann the problem of multivalued integration was

extensively studied. I will mention here only the multivalued integration introduced

by Gerard Debreu in [8]. The Debreu integral is an extension of the Bochner integral

to the case of set valued functions. In his important paper Debreu also compared

his integral with the (A)-integral and showed that the two integrals coincide when

the multifunctions take values in the hyperspace of compact convex subsets of IRn

with the Hausdorff distance h. In this way what is true for the (D)-integral is true

for the (A)-integral.

Following this idea the multivalued integration has been extended to the case of

infinite dimensional spaces either in countably additive or in finitely additive frame-

work. The aim of this paper is to produce a short history about the ”equivalent”

definition of the Debreu integral.

2 Notations

We first introduce some notations and obviously we define the (A)-integral in the

infinite dimensional case.

Let (Ω, Σ) be a measurable space, µ : Σ → IR+
0 a bounded countably (or

finitely) additive measure and X a separable metric space. If A and B are bounded

subsets of X, the Hausdorff distance between A and B is given by: h(A,B) =

max{e(A,B), e(B, A)} where e denotes the excess and it is defined by e(A, B) =

supx∈A infy∈B ‖x− y‖.

We recall the notation of the following hyperspaces:

ck(X) = {C ⊂ X : C 6= ∅ is compact and convex }

cwk(X) = {C ⊂ X : C 6= ∅ is w-compact and convex }



A survey on multivalued integration 3

cfb(X) = {C ⊂ X : C 6= ∅ is bounded, closed and convex }

We remind that, in order to be sure that the (A)-integral admits measurable se-

lections we have to require both the separability of the space and the ”measurabil-

ity” of the multifunction. The one that we introduce here is the classical Effros-

measurability, but there are several others that can be found in [13] or in [7] or in

[12]. F : Ω → 2X \{∅} is Effros measurable (or simply measurable) if for every open

set U

F−U = {ω ∈ Ω : F (ω) ∩ U 6= ∅} ∈ Σ.

The integrable boundedness was introduced to ensure that the family of integrable

selections, S1
F = {f ∈ L1

µ(X) : f(ω) ∈ F (ω) a.e. } is non empty. A multifunction F

is called integrably bounded if there exists a scalar function g ∈ L1
µ(IR+

0 ) such that

h(F (ω), {0}) ≤ g(ω). In this case

(A)−
∫

Ω
Fdµ =

{∫
Ω
fdµ, f ∈ S1

F

}
6= ∅.

3 The Debreu Integral in countably additive case.

In his paper ”Integration of Correspondences”, Debreu introduced a new version

for the set valued integral; he considered multifunctions with values in ck(IRn),

proved that the family of simple multifunctions is dense in the space L1(ck(IRn))

of measurable multifunctions which admit non empty (A)-integral, and defined

the (D)-integral via simple multifunctions. Namely, a measurable multifunction

F : [0, 1] → ck(IRn) is (D)-integrable if there exists a sequence of measurable simple

multifunctions (Fk)k such that

(D)1 h(Fk, F ) converges to zero λ a.e. (this is labelled throughout this paper as the

total measurability of F );

(D)2 limm,k→∞
∫

h(Fk, Fm)dλ = 0.



4 Anna Rita Sambucini

In this case, since (ck(IRn), h) is complete (and separable), the (D)-integral of F is

defined as follows:

(D)−
∫

Fdλ = lim
k→∞

∫
Fkdλ.

The importance of the result of Debreu lies in the fact that this integral is compact

convex valued, and all the results known for the Bochner integral also hold for it.

What’s more, Debreu proved that for measurable and integrably bounded multifunc-

tions the (A)-integral and the (D)-integral coincide. This result was extended later

by several authors in the framework of a measurable space (Ω, Σ, µ) more general

than [0, 1] with the Lebesgue measure. I mention here, for the countably additive

case, the contributions of [12], [6], [24], [17].

The results in [12] and [6] extend those of Debreu to the case of infinite dimensional

spaces, when the measure µ is finite and atomless, and the space X is a separable

Banach space, using the Radström embedding Theorem, [21]. We recall it for the

sake of completeness. Let X be a metric space and let (M,h) be a family of elements

of (cfb(X), h) satisfying:

(R)1 M is closed with respect to the sum + and with respect to the multiplication by a

scalar number λ ∈ IR+
0 ;

(R)2 if A ∈ M then A + BX is closed, where BX denotes the closed unitary ball of X.

then M can be embedded as a convex cone in a separable metric space N (if X is

a Banach (reflexive) space we can choose N Banach (reflexive) too) in such a way

that:

- the embedding is isometric;

- the sum on N induces the same operation on M ;

- the multiplication by a non negative number on N induces the same operation on

M .

In particular, (ck(X), h), (cwk(X), h) satisfy the conditions (R)1, (R)2 and so mea-

surable multifunctions with values in these hyperspaces can be viewed as single
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valued functions. If X is reflexive the same is true for (cfb(X), h).

In this way the definition of (D)-integral given in (D)1 and (D)2 can be easily ex-

tended to the infinite dimensional case. The difference between the results in [12]

and those in [6] is due to the fact that (ck(X), h) is separable and complete, while

(cwk(X), h) needs not to be separable, in general. Therefore Byrne had to assume

the total measurability of the multifunction explicitly.

Finally for what concerns the equivalence between (A)-integral and (D)-integral the

results obtained are the following:

Theorem 3.1 ( Hiai–Umegaki [12], Theorem 4.5) Let X be a separable metric

space. If F : Ω → ck(X) is (A)-integrable then cl
∫

Ω
Fdµ ( moreover if X has the

RNP,
∫

Ω
Fdµ itself ) is equal to the Bochner integral of F considered as a function

in L1
µ(N).

If X is reflexive and F : Ω → cfb(X) is (A)-integrable, then
∫

Ω
Fdµ is equal to the

Bochner integral of F considered as a function in L1
µ(N).

Observe that in [12] the (D)-integral is called Bochner integral. Moreover if X is

complete, the graph-measurability is equivalent to the Effros measurability and then

the first result of the previous theorem holds simply for the (A)-integral, (see for

example Theorem 5.23 of [14]). We also report Byrne’s Theorem:

Theorem 3.2 (Byrne [6]) If F : Ω → cwk(X) is measurable, totally measurable

and integrably bounded then its (A)-integral and (D)-integral coincide.

In order to prove the equivalence of integrals, Byrne observed that the proof given

by Debreu is valid, with some modification, only if the space X is reflexive. Ex-

tending the proof to a more general case requires sufficient conditions for the weak

compactness of S1
F ⊂ L1

µ(X). In particular Byrne proved that if F is measurable,

integrably bounded, with values in cwk(X) and totally measurable, then the set

S1
F ∪ {∪nS

1
Fn
} is relatively weakly compact in L1

µ(X).
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To extend now the comparison to the target hyperspace M = cfb(X) with

the Hausdorff distance, note first that it can be embedded as a convex cone in a

suitable Banach space N , if we replace the sum + with the operation +̇, defined as

A+̇B = cl(A + B), (see [10]).

In this way a multifunction with values in cfb(X) can be viewed as a N -valued

function, and it is possible to define its (D)-integral.

However, to compare it with its (A)-integral, it is not possible to follow the proof

of Byrne, since it is strictly related to the Grothendieck Lemma and to the weak

compactness of the values of the multifunctions.

In [24] I obtained the equivalence under the further hypothesis that X∗ has the

RNP. In this case in fact it is possible to use some results concerning the weak

compactness of subsets of L1
µ(X) (see [9]) and to prove that S1

F is weakly relatively

compact if F is measurable and integrably bounded.

Moreover if F is totally measurable it is possible to construct an integrably bounded,

measurable cfb(X)-valued multifunction G and a sequence of simple measurable

multifunction (Gn)n such that the sequence satisfies (D)1 and (D)2 and Gn ⊂ G for

every n ∈ IN . Using this result it is possible to obtain the following

Theorem 3.3 [[24], Theorem 3.11] Suppose that X is a separable Banach space

and that its dual X∗ has RNP. If F : Ω → cfb(X) is a totally measurable and

integrably bounded multifunction, then

(A)−
∫

Fdµ = (D)−
∫

Fdµ.

An analogous result appears in [17]. There the comparison of the two integrals is

obtained when X is a separable reflexive Banach space and the multifunctions take

values in the family of sets in cfb(X) which have the so called Drop property. The

authors modified the definition of (D)-integral asking that the defining sequence of

simple multifunctions is equibounded and converges to F is the sense of Mosco, and

prove that if F is (D)-integrable in this sense and admits integrable selections, then

again the two integrals coincide.
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4 The Multivalued Integral in finitely additive

case.

The importance of integrating correspondences with values in infinite dimensional

commodities spaces was recognized long time ago. Quite recently attention has been

posed to the case of finitely additive measures (see for example the paper of T.E.

Armstrong and M.K. Richter [1]).

In fact, if we consider economies with negligible individuals, we have to ask that

the measure µ is atomless. If we denote by Σ the σ-algebra of all possible coalitions

of agents there are no economic reasons to exclude a priori some coalitions, but we

have to take under consideration the phenomenon concerning non atomicity:

Theorem 4.1 [Ulam’s Theorem (1930)] If we assume CH and we suppose that |Ω| >

ℵ0 the only atomless countably additive measure µ : 2Ω → IR+
0 is the null measure.

Therefore, it is clear that if we want that Σ coincides with the power set 2Ω we

cannot assume the non atomicity of µ if we assume CH. On the other hand, in the

finitely additive case, and in view of the mentioned applications in Mathematical

Economics, all the mentioned features are compatible, and monotonicity can be

strengthened: the usual alternative is the strong continuity of µ, namely µ is strongly

continuous if and only if for every ε > 0 there exists a finite decomposition of Ω,

Ai ∈ Σ, i = 1, . . . , n such that µ(Ai) ≤ ε for every i = 1, . . . , n.

Indeed the following result is known:

Theorem 4.2 [Nachbin Theorem (1965)] Every atomless measure µ : Σ → IR+
0

can be extended to the power set in such a way that the extension is finitely additive

and strongly continuous.

This theorem allows the extension to the whole power set. On the other side, in the

countably additive case, everything agrees with what is already known, thanks to

the following theorem:
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Theorem 4.3 [Saks Theorem (1934)] If µ is countably additive then it is atomless

if and only if is it strongly continuous.

Achille Basile in [3], was the first who studied and applied (A)-integration with

respect to quasi-countably additive measures µ. The multivalued integration was

also studied by the author jointly with Anna Martellotti in two different directions.

A multivalued integration in the sense of Debreu was developed in [18] and [22, 23]

when the multifunctions take values in a complete subspace of all closed convex

and bounded subsets of a locally convex topological vector space X. In the first

case the defining sequence of simple multifunctions does not depend on the family

of seminorms. In both papers some properties for the integral are obtained, like

convergence theorems and Radon-Nikodym theorems.

In [19, 20] the authors introduce the (A)-integral in the finitely additive setting

and compared it with the (D)-integral given in [18]. The first problem was to

decide what kind of measurability and integrability to assume in order to ensure the

existence of ”good” selections. For ”good” selections of a multifunction F we mean

that with them the (A)-integral is non empty and that it is possible to reobtain it

in the countably additive case as a particular case. For this reason in these papers

Σ is an arbitrary σ-algebra instead of the power set, even if the power set eliminates

all problems concerning measurability. Indeed the Ulam Theorem does not permit

to consider the countably additive case as a corollary of the finitely additive case.

Several results about the existence of selections in the countably additive case

can be found in the literature. We quote here those of K. Kuratowski and C. Ryll

Nardewski [15] and those of C. J. Himmelberg [13]. On the contrary, before [19, 20],

there were no existence results when µ is only finitely additive.

In [19, 20] two different theorems for the existence of selections, one for multifunc-

tions with values in ck(X) and the other for multifunctions ranging in cfb(X) are

obtained.

Proposition 4.4 [19] Let X be a separable Banach space. Let F : Ω → ck(X) be a
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measurable multifunction such that cl{F (Ω)} = cl{⋃ω∈Ω F (ω)} is a compact subset

of X; then SF 6= ∅, where SF denotes the family of selections of F which are totally

measurable.

When the compactness of the range of F is dropped, the total measurability of

the selections in not ensured any more. One can only obtain scalarly µ-measurable

selections. For this reason, in [20], the authors considered S1
F,P ; the space of Pettis

integrable selections.

Proposition 4.5 [20] Let X be a separable reflexive Banach space. If F : Ω → cfb(X)

is measurable and integrably bounded, then S1
F,P 6= ∅.

In this way, if F is integrably bounded we can define the (A)-integral as the set of

the integrals of its ”integrable” selections, where we mean Bochner integrability in

the compact convex case, Pettis integrability in the other one.

Moreover, in both cases one can define the (D)-integral via simple multifunctions,

provided (D)1 is replaced with

(D)′1 h(Fn, F ) µ-converges to zero

which is the standard assumption in the finitely additive case. Indeed, in the finitely

additive case almost everywhere convergence does not compare with convergence in

µ-measure, and only this last one yields Convergence Theorems of the integrals (see

for example [5, 16]).

Now the two ingredients are defined and we are ready to compare them, by making

use of the results of [12, 6] for the countably additive case.

The bridge to move from the finitely additive setting to the countably additive one

is represented by the Stone Theorem and the Stone transform of a measure and of

a function. Here we suppose that (Ω, Σ) is complete with respect to µ (namely Σ

contains all subsets of µ-null sets), we denote with S the Stone space associated to

(Ω, Σ, µ), and with µ the Stone extension of µ.

It was immediate to define the Stone extensions of selections and multifunctions
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which are totally measurable following the idea of Feffermann [11] and taking into

account that the hyperspace is embedded in a suitable Banach space N and that the

multifunctions become functions with values in this space N ; as it has been done in

[19].

The situation was different and harder in the other case [20]. There a suitable defi-

nition for the extension of the Pettis integrable selections has been given, assuming

the reflexivity of X. Given a scalarly µ-measurable selection f of F , we have intro-

duced a new function φ, which is the Stone extension of f , which is defined µ-almost

everywhere by: φ(s)(x∗) = x∗f(s). We observe that, actually, if f is totally measur-

able, the extension obtained in this way coincides µ-a.e. with that one obtained via

simple functions.

In both cases the following results hold:

- (D)−
∫

S
Fdµ = (D)−

∫
Ω
Fdµ, where F is the extension of F ;

- if f ∈ S1
F (in the sense of Bochner or Pettis) then its Stone extension f ∈ S1

F
(which is always in the Bochner sense) and

∫
Ω
fdµ =

∫
S

fdµ.

Thanks to this fact and to the equivalence in the countably additive case, if F is

(D)-integrable, immediately we obtain a first inclusion:

(A)−
∫

Ω
Fdµ ⊆ (A)−

∫
S
Fdµ = (D)−

∫
S
Fdµ = (D)−

∫
Ω
Fdµ.

To reverse this inclusion a further condition is needed. It is well known ([4, 16]) that

when µ is finitely additive, L1
µ(X) not to be complete. Therefore, in both papers, the

completeness of L1
µ(X) is explicitly assumed: in this way, every integrable selection

ϕ of F is related to a integrable function f ”close” to F in the following sense:

f ∈ L1
µ(X), f = ϕ and, for every α > 0, µ({ω ∈ Ω : d(f(ω), F (ω)) ≥ α}) = 0

(which, in turn, reduces to f ∈ S1
F in the countably additive case).

In ck(X) this is enough to reverse the inclusion thanks to the properties of the
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Bochner integral, while in cfb(X), where we suppose that the selections are Pettis

integrable, only the closure of the (A)-integral coincides with the (D)-integral and

we have to prove directly, when X is reflexive, that the (A)-integral is closed.

So, the two main results are:

Theorem 4.6 [19] Let µ be a bounded finitely additive measure with L1
µ(X) complete

and suppose that X is a separable Banach space. If F : Ω → ck(X) is (D)-integrable

then,

(A)−
∫

Fdµ = (D)−
∫

Fdµ.

Theorem 4.7 [20] Let X be a separable reflexive Banach space, (Ω, Σ) a measurable

space, µ a bounded finitely additive measure such that Σ is µ-complete and L1
µ(X)

is complete. If F : Ω → cfb(X) is (D)-integrable, then

(A)−
∫

Fdµ = (D)−
∫

Fdµ.

It should be mentioned that, in view of applications in Mathematical Economics,

the convexity and the boundedness of the values of F are quite severe restrictions.

However it appears impossible to keep this comparison technique in the non convex

case: indeed in this case, examples show that the (D)-integral is not well defined.

Even dropping the boundedness of the values appears difficult.

Some preliminary results without convexity and boundedness directly for the (A)-

integral (that is, without comparison with the (D)-integral) have been obtained

jointly with Anna Martellotti for some classes of multifunctions.
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