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Maria Cristina ISIDORI(*) - Anna Rita SAMBUCINI(*)

The Monotone Integral - Part II (**).

Sunto. - Utilizzando [o rappresenfozione di uno spazio vettoriole localmente
convesso B come limite proiettivo di spazi di Bonach si estendono risultati
oltenuti in [T].

Summary. - Using the representation of a letvs E as the projective limit of Be-
nach spaces we extend the results given in [7).

1. = Introduction.

The aim of this paper is to construct a theory of integration for scalar
functions with respect to finitely additive strongly bounded measures
with values in a complete locally convex topological vector space. In [6]
the Bochner and the monotone integral are compared in nuclear spaces
and some relations between them are obtained under suitable conditions
concerning the boundedness of the Radon-Nikodym derivative of the
measure with respect to any Rybakov control.

Sinee the definition of the monotone integral is stronger than the
definition of Bochner integral, in [7] the authoresses gave another defi-
nition of monotone integrability which involves the Me-Shane integral,
in a Banach space X. More precisely, if m : Z— X is a finitely additive
bounded measure and A is the Lebesgue measure, a measurable function
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f:82—Ry is integrable in the monotone sense ((*)-integrable) if for
every E e X, there exists an element w® € X such that for every £=>0

there exists a gange A(¢) (which must be the same for every £ € X) such
that

lim sup | w® — 3 AT) ¥(t:) | <e
for every generalized McShane partition (T';, £;); subordinate to A(e) as
defined in [T].

This new definition allows us to obtain the equivalence between
Bochner and (*) integrals when one integrates with respect to measures
taking values in Banach spaces. This paper is the natural continuation of
[7]; here in fact the measures with respect to which we integrate take
their values in complete locally convex topological vector spaces and the
equivalence obtained in [7] follows from the representation of a letvs E
as the projective limit of Banach spaces. Moreover we introduce the
weakly (7)-integral and we compare it with the previous integrals. We
observe that in this case to obtain the equivalence between L' *(m) and
(w) — L' (m) we need a definition of Groetendieck integrability, while in
[5, 6] the Boehner integrability (in which the defining sequence does not
depend on @ el) was necessary.

2. — Definitions of the integrals and their properties.

Let E be a complete locally convex space, m : £—FE a finitely addi-
tive strongly bounded measure.

Every complete loeally convex space E is isomorphie to the projective
limit of a family of Banach spaces; this family can be chosen such that its
cardinality equals the cardinality of a given (-neighbourhood basis in E
(see [9]).

Let {U,:ael} be a basis of convex and eircled neighbourhoods of 0
in E. We say that a < B if Uzc U . If p, is the gauge of U/ ,, we can form
the projective limit E = pjl(E ,, g, 5), where B, =Ey_is the complete
Banach space defined as E,=E/V,, where V,=p;'(0),and g, ;is a
continuous linear map of E; into E, defined by g, s([x]s) = [z]., for
every a = 3, where [x], denotes the equivalence class of the element x
with respect to ker (p,). If a<f then p,=p;.

We denote by m ,: T —E , the bounded finitely additive measure de-
fined by m ,(B) = [m(B)], for every o e I and for every B e X. For every
ael, X, , is the o-algebra generated by X and all m ,null sets.
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We refer to [5] for the notations and definitions relative to each
i, and to [7] for the notion of Me Shane integral.

Note that, since m is bounded, for every a e I the semivariation ||m |
is bounded as well, and for every a</f one easily obtains that
llm ol < [ .

We consider the following definition of integrability:

DEeFINITION 2.1, Let f: 2— R be a Z-measurable function. Then f is
m-integrable iff for every a eI there exists a sequence of simple fune-
tions (f}), such that:

(i) (f%),|lm ,|-converges to f, ie. f is measurable by semi-
norms;

(ii) for every FeX there exists a yrpeE such that
lim p,([fidm —yg) =0, for every ael.
o F

In this case we set

yr=fdm.

F
We denote by L'(m) the space of m-integrable functions.

We observe that if £ iz a Banach space, f is m-integrable iff f is
Bochner integrable. So for every a e/ f is Bochner integrable with re-
gpect to m .

In [7] we have introduced the following definition in the case of a Ba-
nach space:

DerFINITION 2.2 Let Y be a Banach space, m: £— ¥ be a finitely ad-
ditive bounded measure and i be the Lebesgue measure. A measurable
funetion f : 2 — Ry is integrable in the monotone sense ((*)-integrable)
if for every E e X, there exists an element w®e Y such that for every
£>0 there exists a gauge A(e) (which must be the same for every EeX)
such that

lim sup | w® - _21 MT) Bty | se

o= @0

for every generalized McShane partition (T, t;); subordinate to
Ale).

We denote by [ fdm =w* and by L' *(m) the space of all (*)-inte-
E
grable funetions.
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Sinee for every a eI, E , iz a Banach space and m ,: ¥—F , defined
by m ,(B) = [m{B}],, is a bounded finitely additive measure we can con-
sider the space L' *(m,) and we prove that:

LEMMA 2.1. If fe I"]ILL*{ma} then (_l'ﬁima) ek,
[+ 4 F

ael

Proor. If fe n L"‘Iim.s}, by definition, and Theorem 4.4 of [7],

feL' w{mﬁJ“LIIim,g}, for every fel. Wepmvethat{ffdm ), isin E,
namely, for every a < j,

ga.p(Fjﬁmﬁ% [ fdm...

F
By hypothesis [fidm ;= lim [ dm . Since f% ||m g|l-converges to f, fis
F Rl

X. gmeasurable. So we have
{zeE: |flx)—fi(x)|>1} eZ, 5C2s 4
and

| aliC1f = F2] > 8) < [l liCLf = FR] = 2.
Therefore 7 |m .||-converges to f. Since ([ ffdm ;), converges in E 4, it
F

is Cauchy in & ;4; for every £ > 0 there exists % e N such that for every
r, e8>0

pol i stramy ) <e,
F
and so ([ ffdm,), is Cauchy in E ., since

F

‘. =anU”3—f“3}d'ﬁ¢) Epﬂ(Fj(ﬁ—fﬁ}dm) -

#

Thus f is m -integrable since the integral does not depend on the defin-
ing sequence (f7),, and we obtain

@, gd o ﬁd o
LA R

F
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and the sequence on the left hand side converges to [ fidm ,. Therefore
we have 3

ga.ﬁ(ijdmﬁ] = ﬂu.ﬂ(ﬂﬁﬂpjﬂdmﬁ) = lim gﬂ_ﬁ(*mdmﬁ) -

= lim jﬁdmfp[ﬁima.

o 0

F

Thus ([ fdm ), E, for every Fe X and
F

ya.a(Fj}dmﬂ] - gn,ﬁ(ijdm,;) =ijdmn =Fj}dma.

Now, using the projective structure of E we define the (*)-integral
for a non negative function with respect to a finitely additive strongly
bounded measure with values in a complete locally convex space.

DEFINITION 2.3. f: Q =Ry is (*)-integrable with respect to m iff fis
(*)-integrable with respect to m,, for every ael. In this case we
set

-

o o).

II-"

for every FeX.
We denote by L' *(m) the space of all (*)-integrable functions.
In [8] the following definition is given:

DEFINITION 24. f: 2—Ry is weakly (7)-integrable if ¢ : t—>m(f>1)
is Pettis-integrable and if f—|z*m|(f>t)eL'(Ry), for every
x* e E*, Note that if fis weakly (T)-integrable, then for every Fe X, f-1,
is weakly (7)-infegrable. In this case we set

[ fam = Py rm(ﬁlp::-t}dt .
F (1]

If fis real valued we say that f is WEE (T)-integrable iff f*, f~ are
weakly (~)-integrable. We denote by w — L'(m) the space of all weakly
(" )integrable functions.
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3. = Comparison.

ProPOSITION 3.1. Let f: 2—Ry be a measurable function. Then fis
m-integrable iff [ is m -integrable, for every ael.

Proor. If fe L'(m) then there exists a sequence of simple functions
(f2), such that f2|m ,|-converges to f and, for evey F e X, there exists
iy peE such that for every ael

,}iﬂpn( [fidm - y,«) =0.
F

Then,
Pn( [ﬁtfm—yr) =pa([ Iﬂdm—yr] )=
F F a
=p..(L[mmL—ryrlu)=pu(rjﬁdmu-ry;~1u).
So fe N L'(m,).

Viceversa, if fe HIL](mn}I, then, for every a e/, there exists a se-
X e

quence of simple functions (f2), which ||m |-converges to f, and such
that, for every Fe X, ([f,dm,), converges in E . Fix F e . By Lemma
-

2, and by Theorem 4.4 of [7], ( [fidm ), is in E. Let y e E be such that
F
for every ael, [y ). = [fdm ., it only remains to prove that for every
.
ael, lim p,(yr— [f2dm)=0. But
Wi F

m(w —Fjj‘;dm) = [yp- —Fjﬁ dm]a
(vl - Lj f‘:‘adm]n |- |Ljfdmﬂ - [fidm.

L

CoOROLLARY 3.1. Let f: 2 — Ry be a measurable function. Then f is
m-integrable iff fis (*)-integrable with respect to m and the two inte-
grals agree.

and so feL'(m).
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ProorF. It follows from Definitions 2.1 and 2.4, from Lemma 2.3 and
from the projective structure of E.

Now we want to compare the Bochner integral and the (*) integral
with the weak (")-integral. In order to do this we shall need a prelimi-
nary Lemma.

LEMMA 32, Let ael and let xXeEE. Then x* defined as x*(x) =
=z*([x],), belongs to E*.

Proor. We have only to prove that x*=x2¥pr,: E—FE ,—R is con-
tinuous at zero. Since x*eF ¥ then for every £>0 there exists d(z, a) >0
such that for every yeE, with |lyll. <6 then |z2(y)| <e.

Let Vi={xeE:p,(x) <d(e, a)}. Let zeV?. Then [z],cE, and
p.([x]l,) = d(z, a). So

|Je*(x) | = |x2([x].) | <e.

ProposITION 3.2. Let f be weakly (7)-integrable with respect to m.
Then f is weakly (T)-integrable with respect o m, for every ael.

ProoF. Let ael be fixed. Let x2 e E*.
By Lemma 3.3 #*=x*pr,.e E* Thus we have

z*(m)=xi([ml,) =x3(m,).
Hence
|z*(m) |[(f>1) = |xZ(m,) |(f>1).
Fix FeX and set yp= (w) -F_f-fdmeE‘ Then

2*yp) = [2*m)f 1>t dt= [220m)f 15> 1) dt.
1] 1]

Therefore [ iz weakly (™ )-integrable with respect to m ,, for every ael
and

Ifdm,,=[J dml o

Now we want to compare L' *(m) and w — L' (m).

First we compare them in a Banach space. Let ¥ be a Banach space
and let u : £— Y be a finitely additive strongly bounded measure. We set
¢F(t) =pu({xeE: flz) >t}) and ¢pE() =u({xeE :f.(x) > t}).
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TaeorEM 3.1. If f: 2 —R, is a measurable function such that
there exists o sequence of simple functions (fu)u, fu=f such that

i) £ |lell-converges to f,
ii) (w) — lim @5 (1) = ¢7 (1),
i) lim [@Z(t) dt = [@F(2) dt exists in Y, for the weak topology,
BB i
for every Be® then f is (*)-integrable with respect to u.

ProoF. The proof is the same as in Theorem 4.8 of [7], in fact in order

to prove that fu(zreE: f,>t)dt:®—Y is countably additive, for
-
every E e X, the condition iii) is enough.

THEOREM 3.2. Let f: 2— Ry be o measurable function such that
Jim leell( £= t) = 0. Then f is (x)-integrable with respect to u iff f is weak-
ly (T)-integrable with respect to u.

PrOOF. Suppose that fis (*)-integrable; then for every £ e X, of(t) is
MecShane-integrable and so by Theorem 1.Q of [4] ¢*(f) is Pettis-inte-

grable and the two integrals agree.
It remains to prove that for every z*e¥* | u|(f>t)eL'(Rg).

Since ¢¥(t) is Pettis-integrable [ |2 u|({wek : flw) >t}) di <+
and by Theorems 35, 3.6 of [2] j f is integrable with respect to
|* u] -

Suppose now that f is weakly (7)-integrable. By hypothesis for every
EeX ¢ is Pettis-integrable, namely for every E e X there exists wgye X
such that ﬂ}ﬂm*,uli{w cE:flw) >t dt=z"wy and |z u|(f>1)e

e LY RS

Sinee fis measurable by Proposition 3.2 of [7] ¢ is totally measurable.
As in Proposition 3.2 of [7] there exists a sequence of simple functions
(fu)e with f, <f for every neN and f, converges to f u-ae.

Let ¢,.(t)=p{we:f,(w)>t}. Then lim @, (1) = @(t) i-ae.
and

le*u|{weQ: folw) >t} < |x*u|{wel: flw) =t}
Let E e X be fixed. We shall prove that the limit lim [@%(t) dt exists in
b
Y, for the weak topology, for every B e &.

e ———
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By Proposition 4.2 of [7] ¢% is Bochner-integrable, for every ne N
and so x*¢p¥ —x* ¢ e L' (R; ). Moreover

|t pf -z 9% | < |x*pf |+ |x* 98| < |*pu|{we: folw) >t} +
+atu{weQ: flo) >t} <2|a*u|(f>1) e LA(RY)
and so0 we have

]imsupf|;n‘gf:-”l{t}—a:*¢£{t}|d£5
B
Ellim sup |x* pF () - x* ¢ E(1) |dt < I2|m*y|(f} t) dt .
g o

Since lim |z*@®(t) —a*¢%(t)| =0 A-ae. it follows that

Jim, [[|2* ¢¥ () - 2" 98(t)|at =0
B

and so

lim
n—s =

[m*:ﬁf{t} dt—2*wg
B

= lim | [ERHOE A B dt’ <
B I
< lim [ |a* 50 —a*¢5(t) |dt=0.
B

Thus we have proved the existence of the limit lim [¢%&(t) dt in ¥, for
— 0 B

the weak topology, for every Be 3.
By Theorem 3.5 f is (*)-integrable and the two integrals agree.

COROLLARY 3.2, Let f: Q= R} be n measurable function such that
lim [lm o[l f > ) = 0. Then L'(m) = L"*(m) = w ~ L' (m).

ProoF. It follows from Corollary 8.2, Theorem 3.6, where u =m.,,
and Proposition 3.4,
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