HOME / RICERCA

     

For what concerns the Rights Metadata for Open Archiving (RoMEO) all the papers before 2010 are uploaded in the present list as a copy of the original paper.
Relatively to the papers published after 2010, in the present list there are the link to the journal page in which the papers appear or a pre-print version of them.
In both cases the reader is informed that by clicking on the corresponding link file he/she will be redirected to the journal/repository and therefore cookies
from the linked pages could be received.

 

 

   Papers

  1. A. Martellotti-A. R. Sambucini Riesz space valued submeasures and application to group-valued finitely additive measures. Matematiche (Catania) 42 (1987), no. 1-2, 37–48 (1989)
  2. A. Martellotti-A. R. Sambucini A Radon-Nikodym theorem for a pair of Banach-valued finitely additive measures, Rend. Ist. Mat. di Trieste, 20 (2) (1988), pp. 331-343.
  3. A. Martellotti-A. R. Sambucini Closure of the Range and Radon-Nikodym Theorems for Vector Finitely Additive Measures with Respect to Different Types of Integration, Atti Sem. Mat. Fis. Univ. Modena, XLII, (1994) pp. 343-356.
  4. A. Martellotti-A. R. Sambucini A Radon-Nikodym theorem for multimeasures, Atti Sem. Mat. Fis. Univ. Modena XLII, (1994) pp. 579-599.
  5. A. Martellotti-K. Musial-A. R. Sambucini A Radon-Nikodym theorem for the Bartle-Dunford-Schwartz Integral with respect to Finitely Additive Measures, Atti Sem. Mat. Fis. Univ. Modena , XLII, (1994) pp. 625-633.
  6. A. R. Sambucini Integrazione per seminorme in spazi localmente convessi, Rivista di Matematica Univ. Parma 5, { 3} (1994), pp. 371-381.
  7. A. R. Sambucini Un teorema di Radon-Nikodym in spazi localmente convessi rispetto all'integrazione per seminorme, Rivista di Matematica, Univ. Parma, (5) { 4}, (1995), 49-60.
  8. A. Boccuto-A. R. Sambucini On the De Giorgi-Letta integral with respect to means with values in Riesz spaces, Real Analisys Exchange 21 (2) 1995/96 pp. 793-810.
  9. A. Boccuto-A. R. Sambucini The Burkill-Cesari integral for Riesz-spaces, Rendiconti Ist. Mat. di Trieste, 28 (1996), 33-47.
  10. A. Boccuto-A. R. Sambucini The monotone integral with respect to Riesz-space valued capacities, Rendiconti di Matematica Serie VII, Vol. 16, Roma (1996), 491-524.
  11. A. Boccuto-A. R. Sambucini Comparison between different types of abstract integral in Riesz spaces, Circolo Matematico di Palermo, Serie II, Tomo XLVI (1997), 255-278. Addendum to: Comparison between different types of abstract integrals in Riesz Spaces, Rendiconti del Circolo Matematico di Palermo May 2000, Volume 49, Issue 2, pp 395-396
  12. A. Boccuto-A. R. Sambucini Abstract integration in convergence groups, Atti Sem. Mat. Fis. Univ. Modena, XLVI, (1998), 315-333.
  13. M. C. Isidori-A. Martellotti-A. R. Sambucini The Monotone integral, Atti Sem. Mat. Fis. Univ. Modena, suppl. Vol XLVI (1998), 803-825.
  14. M. C. Isidori-A. Martellotti-A. R. Sambucini Integration with respect to orthogonally scattered measures , Mathematica Slovaca 48 (1998), N. 3, 253-269.
  15. M. C. Isidori-A. Martellotti-A. R. Sambucini The Bochner and the monotone integrals with respect to a nuclear finitely additive measure, Mathematica Slovaca, 48, N. 4 (1998), 377-390.
  16. M. C. Isidori-A. R. Sambucini The monotone integral- part II, Atti Sem. Mat. Fis. Univ Modena, XLVI, (1998), 469-478.
  17. A. R. Sambucini Remarks on set valued integrals of multifunctions with non empty,bounded, closed and convex values, Commentationes Math. XXXIX, (1999), 153-165.
  18. A. Martellotti-A. R. Sambucini On the comparison between Aumann and Bochner integral, Journal of Mathematical Analysis and Applications 260 N. 1 (2001), 6-17.
  19. A. R. Sambucini Un problema proposto da Bernoulli: la brachistocrona, Periodico di Matematiche Serie VIII Vol 1, Numero 2 Aprile-Giugno 2001, 5-14.
  20. A. R. Sambucini A survey on multivalued integration, Atti Sem. Mat. Fis. Univ. Modena, L (2002) 53-63.
  21. A Martellotti - A. R. Sambucini The finitely additive integral of multifunctions with closed and convex values, Zeitschrift fur Analysis ihre Anwendungen (J. for Analysis and its Applications) Volume 21 (2002) n. 4, 851-864. Doi: 10.4171/ZAA/1112
  22. A. Boccuto - A. V. Bukhvalov - A. R. Sambucini Inequalities in Classical Spaces with Mixed Norms, Positivity 6, (2002) 393-411.
  23. A. Martellotti - A.R. Sambucini Multivalued integral of non convex integrands, Internation Journal of Pure and Applied Mathematics 5, N. 1, (2003) 11-28.
  24. E. J. Balder - A.R. Sambucini A note on strong convergence for Pettis integrable function, Vietnam Journal of Mathematics, 31, N. 3 (2003), 341-347.
  25. E. J. Balder - A.R. Sambucini On weak compactness and lower closure results for Pettis integrable (multi)functions, Bull. Pol. Acad. Sci. 52 , N. 1 (2004), 53-61.
  26. A. Boccuto, A. R. Sambucini The Henstock-Kurzweil integral for functions defined on unbounded intervals and with values in Banach spaces. Acta Mathematica (NITRA) 7, (2004) 3-17.
  27. A. Boccuto -A.R. Sambucini A McShane integral for multifunctions, J. of Concrete and Applicable Mathematics, 2, N. 4 , 307-325 (2004).
  28. E. J. Balder - A.R. Sambucini Fatou's Lemma for unbounded multifunctions with values in a dual space, Journal of Convex Analysis 12 (2005), No. 2, 383--395
  29. A. Martellotti - A.R. Sambucini A note on a Liapounov-like theorem for some finitely additive measures and applications, J. of Concrete and Applicable Mathematics, 3, N. 4, 481-499, (2005).
  30. A. Boccuto-A.R. Sambucini – V.A. Skvortsov Integration by parts for Perron type integrals of order 1 and 2 in Riesz spaces, Results in Matematics, Vol. 51 (2007), 5-27. Erratum to: Integration by parts for Perron Type Integrals of order 1 and 2 in Riesz Spaces. DOI : 10.1007/s00025-010-0023-7, Results im Mathematics 57 (3-4), (2010), 393-396.
  31. A. Boccuto, D. Candeloro, A. R. Sambucini Stieltjes-type integrals for metric semigroup-valued functions defined on unbounded intervals, PanAmerican Mathematical Journal, Vol. 17 n. 4, 39-58 (2007).
  32. A. Boccuto; B. Riecan; A. R. Sambucini Some properties of an improper GH_k integral in Riesz spaces, Indian Journal of Mathematics (IJM) - special issue for the golden Jubilee (vol. 50 (1), 2008), 21-51.
  33. C. Donnini - A. Martellotti - A. R. Sambucini, Core and Walras equilibria in the subadditive economies, preprint N. 3, (2008).
  34. A. Boccuto; B. Riecan; A. R. Sambucini On the product of M-measures in l-groups, Australian J. Math.,6 (2), (2009), 1-8
  35. A. Boccuto; B. Riecan; A. R. Sambucini Convergence and Fubini Theorems for metric semigroup-valued functions defined on unbounded rectangles, PanAmerican Math. J. 19 (1), (2009), 1-12.
  36. A. Boccuto - A. R. Sambucini - V. A. Skvortsov The Perron Integral of order Two in Riesz Spaces via Peano Derivatives, Comunic. Appl. Nonlinear Anal. 16 (2009), 45-59.
  37. A. Boccuto - D. Candeloro - A. R. Sambucini A Fubini Theorem in Riesz Spaces for the Kurzweil-Henstock Integral, Journal of Function Spaces and Applications, Volume 9, No. 3 (2011), 283–304. doi:10.1155/2011/158412
  38. A. Boccuto-A.R. Sambucini A note on comparison between Birkhoff and McShane-type integrals for multifunctions, Real Analysis Exchange Vol. 37(2), 2011/2012, pp. 315-324. DOI: 10.14321/realanalexch.37.2.0315 Stable URL: http://www.jstor.org/stable/10.14321/realanalexch.37.2.0315
  39. A. Boccuto- A.M. Minotti - A.R. Sambucini Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAmerican Mathematical Journal, vol.23 (1) (2013), pp.57--74.
  40. A. Boccuto - D. Candeloro - A. R. Sambucini Vitali-type theorems for filter convergence related to Riesz space-valued modulars and applications to stochastic processes, J.M.A.A. vol 419 (2), 15 nov 2014, 818-838. DOI: 10.1016/j.jmaa.2014.05.014
  41. D. Candeloro - A. R. Sambucini Order-type Henstock and Mc Shane integrals in Banach lattices setting, arXiv:1405.6502 [math.FA], Sisy 20014- IEEE 12th International Symposium on Intelligent Systems and Informatics, Subotica - Serbia; 09/2014
  42. D. Candeloro - A. R. Sambucini Filter convergence and decompositions for vector lattice-valued measures, Mediterranean J. Math , Volume 12, Issue 3, pp 621-637 (online 2014) arXiv: 1401.7818  doi: 10.1007/s00009-014-0431
  43. D. Candeloro - A.R. Sambucini Comparison between some norm and order gauge integrals in Banach lattices, PanAmerican Mathematical Journal, vol 25 (3), 1-16, 2015 arXiv 1503.04968 
  44. A. Boccuto - D. Candeloro - A. R. Sambucini Henstock multivalued integrability in Banach lattices with respect to pointwise non atomic measures, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. Volume 26, Issue 4, 2015, pp. 363-383 DOI: 10.4171/RLM/710 arXiv 1503.08285 
  45. D. Candeloro, A. Croitoru, A. Gavrilut, A.R. Sambucini An extension of the Birkhoff integrability for multifunctions, Mediterranean J. Math Volume 13, Issue 5, pp 2551-2575, (2016), (online 2015), Doi: 10.1007/s00009-015-0639-7. arXiv 1507.06444 
  46. D. Candeloro, A. Croitoru, A. Gavrilut¸ A.R. Sambucini Atomicity related to non-additive integrability, Rend. Circolo Matem. Palermo, Volume 65 (3), 435-449, 2016 online Doi: 10.1007/s12215-016-0244-z. arXiv 1602.05330
  47. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini Gauge integrals and selections of weakly compact valued multifunctions, J.M.A.A Volume 441, Issue 1, 1 September 2016, Pages 293–308, Doi: 10.1016/j.jmaa.2016.04.009. arXiv 1602.00473 
  48. A. R. Sambucini, The Choquet integral with respect to fuzzy measures and applications, Math. Slov. (2017), vol. 67 n. 6, 1427-1450, DOI: https://doi.org/10.1515/ms-2017-0049., arXiv 1801.03264
  49. A. Boccuto - D. Candeloro - A. R. Sambucini, L^p spaces in vector lattices and applications, Math. Slov., (2017) vol 67 n. 6 1409-1426. arXiv 1604.07570. DOI: https://doi.org/10.1515/ms-2017-0060 arXiv 1604.07570 
  50. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini Relations among gauge and Pettis integrals for multifunctions with weakly compact convex values, Annali di Matematica, (2018), 197 (1) 171-183. Doi: 10.1007/s10231-017-0674-z arXiv 1912.01845 
  51. D. Costarelli, A. R. Sambucini, Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators, Results in Mathematics, Volume 73 (1), (2018) Doi: 10.1007/s00025-018-0799-4, arxiv 1912.00911 
  52. D. Candeloro, C.C.A. Labuschagne, V. Marraffa, A.R. Sambucini Set-valued Brownian motion, Ricerche di Matematica, vol 67 (2), (2018), 347-360. Doi: 10.1007/s11587-018-0372-1, arxiv 1509.06518
  53. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini Some new results on integration for multifunction, Ricerche di Matematica, vol 67 (2), (2018), 361-372, Doi: 10.1007/s11587-018-0376-x, arxiv 1610.09151.
  54. D. Candeloro, A.R. Sambucini, A Girsanov result through Birkhoff integral, Computational Science and Its Applications ICCSA 2018, (chapter) O. Gervasi et al. (Eds.): ICCSA 2018, LNCS 10960, pp. 676–683, 2018 Doi: https://doi.org/10.1007/978-3-319-95162-1_47, arxiv 1912.01339
  55. D. Candeloro, A. Croitoru, A. Gavrilut, A.R. Sambucini, A multivalued version of the Radon-Nikodym theorem, via the single-valued Gould integral, Australian Journal of Mathematical Analysis and Applications, 15 (2), art. 9 pp 1-16 (2018), arXiv:1504.04110v3,
  56. D. Candeloro, R. Mesiar, A.R. Sambucini, A special class of fuzzy measures: Choquet integral and applications, arxiv 1711.08602, Fuzzy Sets and Systems, vol. 355, pp 83-99, (2019), Doi: 10.1016/j.fss.2018.04.008 arXiv: 1711.08602
  57. D. Costarelli, A. R. Sambucini, G. Vinti, Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type, Neural Computing and Applications, 31 (9), 5069-5078,(2019), Doi:10.1007/s00521-018-03998-6, arXiv: 1812.11543
  58. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Multifunctions determined by integrable functions, International Journal of Approximate Reasoning, vol 112, pp 140-148, (2019), Doi: 10.1016/j.ijar.2019.06.002. arXiv: 1906.07019
  59. D. Candeloro, A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, Properties of the Riemann-Lebesgue integrability in the non-additive case, Rendiconti del Circolo Matematico di Palermo, (2019) ,doi: 10.1007/s12215-019-00419-y, arxiv: 1905.03993
  60. D. Candeloro, A. R. Sambucini, L. Trastulli, A vector Girsanov result and its applications to conditional measures via the Birkhoff integrability, Mediterr. J. Math. (2019) 16:144, https://doi.org/10.1007/s00009-019-1431-x, arXiv: 1811.04597

  61. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Integration of multifunctions with closed convex values in arbitrary Banach spaces, arxiv 1812.00597, Journal of Convex Analysis, (2020), 27 (4), 1233-1246.
  62. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Multi-integrals of finite variation, arxiv 1912.00892, Bollettino dell'Unione Matematica Italiana (2020), Doi: 10.1007/s40574-020-00217-w
  63. C. Bardaro, P. Pucci, A.R. Sambucini, G. Vinti, Preface. Boll Unione Mat Ital (2020). https://doi.org/10.1007/s40574-020-00262-5
  64. C. Bardaro, P. Pucci, A.R. Sambucini, G. Vinti, LIFE AND WORK OF DOMENICO CANDELORO: AN APPRECIATION, Boll Unione Mat Ital (2020), https://doi.org/10.1007/s40574-020-00265-2 .
  65. D. Costarelli, A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, The Riemann-Lebesgue integral of interval-valued multifunctions, Mathematics, 2020, 8(12), pp. 1–17, 2250
  66. D. Candeloro, A. R. Sambucini, L. Trastulli, A Girsanov result for the Pettis integral, Real Analysis Exchange, 46(1), 2021, pp. 175-190
    DOI: 10.14321/realanalexch.46.1.0175, arXiv 2007.04610
  67. L. Angeloni, N. Nursel Cetin, D. Costarelli, A. R. Sambucini, G. Vinti, Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces, CONSTRUCTIVE MATHEMATICAL ANALYSIS,
    4 (2021), No. 2, pp. 229-241
  68. A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, A note on convergence results for varying interval valued multisubmeasures, Mathematical Foundation of Computing, (2021), Doi: 10.3934/mfc.2021020
  69. L. Di Piazza, K. Musial, A.R. Sambucini, Representations of multimeasures via multivalued Bartle-Dunford-Schwartz integral, accepted in Journal of Convex Analysis, arXiv2102.09886 (2022).
  70. A. Croitoru, A. Gavrilut, A. Iosif, A.R. Sambucini, Convergence Theorems in Interval-Valued Riemann-Lebesgue Integrability, Mathematics, (2022), 10 (3), art. 450; https://doi.org/10.3390/math10030450
  71. A Boccuto, AR Sambucini, Some applications of modular convergence in vector lattice setting, arXiv.2206.13226, 2022, Sampling Theory, Signal Processing, and Data Analysis, 2012 (2022)
  72. L. Di Piazza, K. Musial, V. Marraffa, A.R. Sambucini, Convergence for varying measures, J. Math.Anal.Appl., 518 (2023 )126782, https://doi.org/10.1016/j.jmaa.2022.126782, arXiv 2209.00354, 2022
  73. A Boccuto, AR Sambucini, Abstract integration with respect to measures and applications to modular convergence in vector lattice setting, Results In Mathematics (2023) 78:4, online first 10 Novembre 2022,
    Doi: 10.1007/s00025-022-01776-4, arXiv :2112.12085, 2021 - arxiv.org
  74. L. Di Piazza, V. Marraffa, K. Musial, A. R. Sambucini, Convergence for varying measures in the topological case, Annali di Matematica (2023). https://doi.org/10.1007/s10231-023-01353-8

Anna Rita Sambucini
Dipartimento di Matematica e InformaticaUniversità degli Studi di Perugia
Stanza/Room 519– Via Vanvitelli 1 – 06123 Perugia (Italy) ☎ +39 075 585 5041
Stanza/Room 8, DICA I piano – Via Duranti 93 – 06125 Perugia (Italy) ☎ +39 075 585 3823
fax: +39 075 585 5024    skype account